scholarly journals Internal Inertia–Gravity Waves in the Tropical Lower Stratosphere Observed by the Arecibo Radar

1984 ◽  
Vol 41 (15) ◽  
pp. 2359-2367 ◽  
Author(s):  
Yasuyuki Maekawa ◽  
Shoichiro Fukao ◽  
Toru Sato ◽  
Susumu Kato ◽  
Ronald F. Woodman
2017 ◽  
Vol 9 (3) ◽  
pp. 284-293 ◽  
Author(s):  
Ajil Kottayil ◽  
Karathazhiyath Satheesan ◽  
Kesavapillai Mohankumar ◽  
Sivan Chandran ◽  
Titu Samson

2015 ◽  
Vol 72 (5) ◽  
pp. 2109-2130 ◽  
Author(s):  
Ryosuke Shibuya ◽  
Kaoru Sato ◽  
Yoshihiro Tomikawa ◽  
Masaki Tsutsumi ◽  
Toru Sato

Abstract Multiple tropopauses (MTs) defined by the World Meteorological Organization are frequently detected from autumn to spring at Syowa Station (69.0°S, 39.6°E). The dynamical mechanism of MT events was examined by observations of the first mesosphere–stratosphere–troposphere (MST) radar in the Antarctic, the Program of the Antarctic Syowa MST/Incoherent Scatter (IS) Radar (PANSY), and of radiosondes on 8–11 April 2013. The MT structure above the first tropopause is composed of strong temperature fluctuations. By a detailed analysis of observed three-dimensional wind and temperature fluctuation components, it is shown that the phase and amplitude relations between these components are consistent with the theoretical characteristics of linear inertia–gravity waves (IGWs). Numerical simulations were performed by using a nonhydrostatic model. The simulated MT structures and IGW parameters agree well with the observation. In the analysis using the numerical simulation data, it is seen that IGWs were generated around 65°S, 15°E and around 70°S, 15°E, propagated eastward, and reached the region above Syowa Station when the MT event was observed. These IGWs were likely radiated spontaneously from the upper-tropospheric flow around 65°S, 15°E and were forced by strong southerly surface winds over steep topography (70°S, 15°E). The MT occurrence is attributable to strong IGWs and the low mean static stability in the polar winter lower stratosphere. It is also shown that nonorographic gravity waves associated with the tropopause folding event contribute to 40% of the momentum fluxes, as shown by a gravity wave–resolving general circulation model in the lower stratosphere around 65°S. This result indicates that they are one of the key components for solving the cold-bias problem found in most climate models.


1999 ◽  
Vol 17 (1) ◽  
pp. 115-121 ◽  
Author(s):  
L. Thomas ◽  
R. M. Worthington ◽  
A. J. McDonald

Abstract. Radar measurements at Aberystwyth (52.4° N, 4.1° W) of winds at tropospheric and lower stratospheric heights are shown for 12-13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; middle atmosphere dynamics; waves and tides)


2019 ◽  
Vol 53 (5-6) ◽  
pp. 2887-2903 ◽  
Author(s):  
N. Koushik ◽  
Karanam Kishore Kumar ◽  
K. V. Subrahmanyam ◽  
Geetha Ramkumar ◽  
I. A. Girach ◽  
...  

2004 ◽  
Vol 4 (4) ◽  
pp. 4339-4381 ◽  
Author(s):  
A. Serafimovich ◽  
P. Hoffmann ◽  
D. Peters ◽  
V. Lehmann

Abstract. A case study to investigate the properties of inertia-gravity waves in the upper troposphere/lower stratosphere has been carried out over Northern Germany during the occurrence of an upper tropospheric jet in connection with a poleward Rossby wave breaking event from 17-19 December 1999. The investigations are based on continuous radar measurements with the OSWIN VHF radar at Kühlungsborn (54.1° N, 11.8° E) and the 482 MHz UHF wind profiler at Lindenberg (52.2° N, 14.1° E). Both radars are separated by about 265 km. Based on wavelet transformations of both data sets, the dominant vertical wavelengths of about 2–4 km for fixed times as well as the dominant observed periods of about 11 h for the altitude range between 5 and 8 km are comparable. Gravity wave parameter have been estimated at both locations separately and by a complex cross-spectral analysis of the data of both radars. The results show the appearance of dominating inertia-gravity waves with characteristic horizontal wavelengths between 600 and 300 km moving in the opposite direction than the mean background wind and a secondary less pronounced wave with a horizontal wavelength in the order of about 200 km moving with the wind. Temporal and spatial differences of the observed waves are discussed.


2000 ◽  
Vol 57 (5) ◽  
pp. 737-752 ◽  
Author(s):  
Fiona M. Guest ◽  
Michael J. Reeder ◽  
Crispin J. Marks ◽  
David J. Karoly

2010 ◽  
Vol 67 (4) ◽  
pp. 981-997 ◽  
Author(s):  
Yoshio Kawatani ◽  
Shingo Watanabe ◽  
Kaoru Sato ◽  
Timothy J. Dunkerton ◽  
Saburo Miyahara ◽  
...  

Abstract Three-dimensional wave forcing of simulated quasi-biennial oscillation (QBO) is investigated using a high-resolution atmospheric general circulation model with T213L256 resolution (60-km horizontal and 300-m vertical resolution). In both the eastward and westward wind shear phases of the QBO, nearly all Eliassen–Palm flux (EP flux) divergence due to internal inertia–gravity waves (defined as fluctuations with zonal wavenumber ≥12) results from the divergence of the vertical component of the flux. On the other hand, EP flux divergence due to equatorial trapped waves (EQWs) results from both the meridional and vertical components of the flux in regions of strong vertical wind shear. Longitudinal dependence of wave forcing is also investigated by three-dimensional wave activity flux applicable to gravity waves. Near the top of the Walker circulation, strong eastward (westward) wave forcing occurs in the Eastern (Western) Hemisphere due to internal inertia–gravity waves with small horizontal phase speed. In the eastward wind shear zone associated with the QBO, the eastward wave forcing due to internal inertia–gravity waves in the Eastern Hemisphere is much larger than that in the Western Hemisphere, whereas in the westward wind shear zone, westward wave forcing does not vary much in the zonal direction. Zonal variation of wave forcing in the stratosphere results from (i) zonal variation of wave sources, (ii) the vertically sheared zonal winds associated with the Walker circulation, and (iii) the phase of the QBO.


Sign in / Sign up

Export Citation Format

Share Document